Pseudo-localization of Singular Integrals and Noncommutative Littlewood-paley Inequalities
نویسندگان
چکیده
Understood in a wide sense, square functions play a central role in classical Littlewood-Paley theory. This entails for instance dyadic type decompositions of Fourier series, Stein’s theory for symmetric diffusion semigroups or Burkholder’s martingale square function. All these topics provide a deep technique when dealing with quasi-orthogonalitymethods, sums of independent variables, Fourier multiplier estimates... The historical survey [30] is an excellent exposition. In a completely different setting, the rapid development of operator space theory and quantum probability has given rise to noncommutative analogs of several classical results in harmonic analysis. We find new results on Fourier/Schur multipliers, a settled theory of noncommutative martingale inequalities, an extension for semigroups on noncommutative Lp spaces of the Littlewood-Paley-Stein theory, a noncommutative ergodic theory and a germ for a noncommutative Calderón-Zygmund theory. We refer to [5, 7, 9, 10, 14, 20, 23] and the references therein.
منابع مشابه
Singular Integrals and Littlewood–Paley Operators
We prove mixed Ap-Ar inequalities for several basic singular integrals, Littlewood–Paley operators, and the vector-valued maximal function. Our key point is that r can be taken arbitrarily big. Hence, such inequalities are close in spirit to those obtained recently in the works by T. Hytönen and C. Pérez, and M. Lacey. On one hand, the “Ap-A∞” constant in these works involves two independent su...
متن کاملOn Some Weighted Norm Inequalities for Littlewood–paley Operators
It is shown that the Lw,1< p<∞, operator norms of Littlewood–Paley operators are bounded by a multiple of ‖w‖ Ap , where γp = max{1, p/2} 1 p−1 . This improves previously known bounds for all p > 2. As a corollary, a new estimate in terms of ‖w‖Ap is obtained for the class of Calderón–Zygmund singular integrals commuting with dilations.
متن کاملSharp weighted norm inequalities for Littlewood–Paley operators and singular integrals
We prove sharp Lp(w) norm inequalities for the intrinsic square function (introduced recently by M. Wilson) in terms of the Ap characteristic of w for all 1 < p <∞. This implies the same sharp inequalities for the classical Lusin area integral S(f ), the Littlewood–Paley g-function, and their continuous analogs Sψ and gψ . Also, as a corollary, we obtain sharp weighted inequalities for any conv...
متن کاملLittlewood-Paley Operators on Morrey Spaces with Variable Exponent
By applying the vector-valued inequalities for the Littlewood-Paley operators and their commutators on Lebesgue spaces with variable exponent, the boundedness of the Littlewood-Paley operators, including the Lusin area integrals, the Littlewood-Paley g-functions and g μ *-functions, and their commutators generated by BMO functions, is obtained on the Morrey spaces with variable exponent.
متن کاملBoundedness of Littlewood-Paley operators and their commutators on Herz-Morrey spaces with variable exponent
The aim of this paper is to establish the vector-valued inequalities for Littlewood-Paley operators, including the Lusin area integrals, the Littlewood-Paley g-functions and g∗μ-functions, and their commutators on the Herz-Morrey spaces with variable exponentMK̇ p,q(·)(R n). By applying the properties of Lp(·)(Rn) spaces and the vector-valued inequalities for Littlewood-Paley operators and their...
متن کامل